

Inox em Operações Portuárias de Fertilizantes

Alta performance na movimentação de fertilizantes

A movimentação de fertilizantes agrícolas nos Portos brasileiros cresce a cada ano e, paralelamente, aumenta também o desafio de proporcionar melhor performance às operações portuárias.

Em toda cadeia logística são considerados a capacidade instalada de produtividade por equipamento na descarga, o tempo necessário para descarregar um navio e, posteriormente, a melhor armazenagem dos fertilizantes no porto, bem como o escoamento dos produtos, que influenciam diretamente na produção do setor de agronegócio.

Entre as principais dificuldades enfrentadas nas operações portuárias, estão o tempo de parada dos equipamentos para limpeza, os riscos de contaminação do produto e o elevado custo de manutenção na movimentação de produtos corrosivos.

Com o aço inox Aperam, diversos equipamentos que tenham contato com fertilizantes podem desempenhar melhor eficiência no processo e proporcionar redução do tempo de operação.

Onde o inox pode ser aplicado

- » Chute (calha, redler e bicas)
- » Esteiras
 - » Longarinas das esteiras
 - » Fixo de rolo
 - » Correias transportadoras
 - » Cavaletes de rolo
- » Grab
 - » Tubulação hidráulica
 - » Filtro de Manga (sistema de desempoeiramento)
 - » Chapas de Desgaste do Shiploader

Grab

Shiploader

Redler

Potenciais aplicações do aço inox

Pelos seus atributos, o aço inox é o material mais requisitado para ambientes que necessitam de assepsia. Nas operações portuárias para fertilizantes, o inox tem potencial para substituir revestimentos anti-corrosão, utilizados em diversos equipamentos da cadeia logística portuária. Por exemplo:

- » Estruturas de aço carbono, como a moega, que são pintadas e precisam ser lixadas e repintadas na parte externa com certa frequência, além de algumas partes dos equipamentos de aço carbono;
- » UHMWPE (Polietileno de Alto Peso Molecular) fixado em parafusos, pois se desprende com certa facilidade, e no Chute;

- » Revestimento de poliuretano utilizado no tanque e nas tubulações;
- » Placas e pastilhas cerâmicas sextavadas e quadradas fixadas com parafusos. O enxofre impregnado nos parafusos exige forte impacto para retirá-los, o que provoca o descolamento das pastilhas;
- » Parafusos que seguram as telhas dos armazéns, substituindo os galvanizados.

Soluções para operadores portuários

O armazenamento eficiente e sem perdas nos Portos é cada vez mais importante para o abastecimento do país. O aço inox apresenta diversas soluções para otimizar a performance dos operadores portuários garantindo durabilidade, fácil limpeza e redução no custo de manutenção.

Vantagens Percebidas

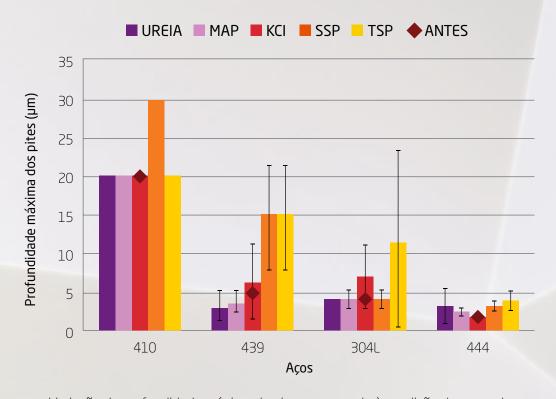
- » Maior eficiência operacional no processo;
- » Otimização de recursos e despesas.

Benefícios

- » Maior durabilidade:
- » Facilidade de limpeza;
- » Alta resistência à corrosão:
- » Redução de custo com inspeção e manutenção;

Resistência à corrosão comprovada

Uma avaliação de resistência à corrosão dos aços inoxidáveis nas principais matériasprimas de fertilizantes mais utilizados na agricultura do Brasil comprovou a eficácia dos aços inoxidáveis 304, 410, 444 e 439 Aperam, em comparação com o aço carbono A-283.


Os resultados apontaram corrosão generalizada no aço carbono em todos os meios. Porém, nos aços inoxidáveis não houve ocorrência de corrosão, em sua maioria. Apesar das matérias-primas terem aderido às superfícies, foram totalmente removidas após a lavagem. O inox 444 foi o aço que apresentou os melhores resultados.

As variações de acabamento, bem como de mix de fertilizantes, podem influenciar consideravelmente nos resultados de resistência à corrosão dos aços inoxidáveis, por isso devem ser avaliados criteriosamente.

Acabamentos

Os acabamentos são caracterizados por seus diferentes perfis de rugosidade. Isso pode ser comprovado através da técnica de perfilometria. Durante o processo, foi possível avaliar a profundidade dos pites, comparando a diferença dos perfis de rugosidade, de cada aço em todos os meios. Confira o gráfico.

Avaliação comparativa da profundidade máxima dos pites SPc por Fertilizante

Variação de profundidade máxima de pites comparada à condição de antes do teste.

Fonte: Centro de Pesquisas Aperam

Av. Brigadeiro Faria Lima, 1355 - 20° andar CEP 01452-919 - São Paulo/SP - Brasil Contato: marketing@aperam.com brasil.aperam.com

